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TECHNICAT. NOTE 3443

SHEARING EFFECTIVENESS OF INTEGRAL STIFFENING

By Robert F. Crawford and Charles Libove
SUMMARY

Values of coefficients for defining the effectiveness of integral
stiffeners 1n resisting shear deformations of the plate of which they
are an integral pasrt are presented for a2 wide range of proportions of
rectangular stiffeners with circular f£illets. The coefficients are
evaluated by the use of an electricael anaslog computer. Formulas are
given in whiech these coefficients may be employed to calculate the
elastic constants associated wlth the twisting and sheering of integrally
stiffened plates, either directly, as in the case of simple longitudinal
or transverse stiffening, or through the intermediste evaluation of pre-
viously defined shearing-effectiveness parameters, as in the case of more
complicated stiffener patterns. The fillet radius is shown to contribute
appreclably to the degree of penetration of the stresses from the skin
into the stiffeners. Thus, through the use of sultable combinations of
rib proportions end fillet radii, simple longitudinal or transverse
integral stiffening can be made to contribute to the overall shear
stiffness of the plate-stiffener combination.

INTROCDUCTION

The effectiveness of integrally stiffened plates, as demonstrated
in references 1 to 4, 1s in part due to the fact that the stresses in
the skin of the plate are conducted into the Integral stiffeners. Even
under simple losdinge, a complicated stress distribution within the
cross section 1s produced, end in consequence the evalustlion of the elas-
tic constents for the plate-stiffener combination 1s difficult.

Formulas for the thirteen elastic constants of plates with integral
stiffeners and a method for amalytically obtaluning upper and lower limits
on the parameters of the formulas ere presented in reference 4. TIn some
cases the differences between the constents caleulated by the upper-
and lower-limit assumptions are substantial. For example, upper-limit
shear stiffnesses calculated in reference 4 were from 12 percent to
32 percent. greater then the calculated lower-limit stiffnesses.
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In the present paper a more refined anslysis is made of the shearing
effectiveness of integral stiffening. The approach used is that of
imposing a quasl-shear deformation upon a repeating element of a plate
with simple longitudinel or tramsverse stiffening (see fig. 1) and then
solving the equations of elasticity assoclated with the imposed deformation.
The method of solution is similar to the method used in solving the torsion
problem of pages 258 to 263 of reference 5. This approach requires the
solution of Laplace's equation over the cross section of the repeating
element as shown in figure 2. Solutions for a wide range of proporitions
of rectangular stiffeners with circular fillets were obtained with a
General Electric Anaslog Field Plotter (ref. 6) which was modified by
the NACA to suit the needs of this particular problem. This modified
field plotter is similar in operation and principle to an electrical
analog computer described in reference T.

Results of this analysis are presented in the form of tabulations
end curves giving coefficients from which the shearing effectiveness of
the integral stiffener may be evaluated. These coefficients may be
used with the formulas of reference 4 for the calculation of the plate
elastic constants; 1f the shearing stiffness of a plate with simple
longitudinal or transverse stiffening is required, however, 1t may be
determined more directly from the glven coefficients through the use of
formulas presented herein.

SYMBOLS

Plate Dimensions

AW srea of perpendicular cross section of rib, sq in.
bg length of repeating element of integrally stlffened plate, in.
by height of rib above plate, in.
B total height of rib and plate, tg + by, in.
h z-distance from y-axis to boundary cdef of specimen (fig. 2)
ES length of plate between fillet and end of repeating element,

by = 2y = Wy,

2

ly height of rib above fillet radius, 'bW - Ty in.

x
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ry radius of fillet, in.
tg thickness of skin or plate, in.
'bw thickness of rib or web, in.

Forces and Elastic Constants

Cx coupling elastic constant associated with coupling between
twist and shear and defined by equations (1) and (2}, in.

Dy twisting stiffness relative to x- and y-directions defined
by equation (1), in-lb

Dxy twlsting stiffness relative to x- and y-directions defined
by equation (3), in-1b

G shear modulus of material, psi

Gy shear stiffness of plate in xy-plane defined by equation (2),
1b/in. '

G shear stiffness of plate in xy-plane defined by equation (4),

Xy

1b/in.

K torsion constant defined by equation (27)

Kt torsion constant for sections shown in figure 6(a)

Mxy intensity of resultant twisting torque, 1b

L intensity of resultant shearing force acting in plame 3z = ts/z,
1b/in.

T coupling elastic constant associasted with coupling between twist

end shear defined by equations (3) snd (&), 1b~t

Special Symbols Used in Shearing-Effectiveness Analysis
c coupling coefficient defined by equation (A30)

Cq coupling coefficient defined by equation (A25)
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coupling coefficient defined by equation (A26)

intensity of resultant shearing force acting in y-direction
in plane z = tg/2, 1b/in.

intensity of resultant shearing force acting In x-direction
in plsme =z = ts/2, 1b/in.

coefficient of twisting stiffness deflned by equation (6)

boundary velue of stress function or boundary value of
electrical potential field (fig. 2)

coefficient of shearing stiffness defined by equation (A22)
and determined by equation (A24)

integral of stress function defined by equation (A35)
integral of stress function defined by equation (A36)

inteneity of resultent twisting torque acting on planes per-
pendicular to x-axis, 1b

intensity of resultant twisting torque acting on planes
perpendicular to y-axis, 1b

coefficlent used in reference 4 to locate effective centroid
of part of rib for resisting twisting deformation

coefficient used in reference 4 to define effectiveness of rib
ip resisting shear deformation

coefficient used in reference 4 to define effectiveness of rib
in resisting stretching in its tramnsverse direction

megnitude of pure shear distortion imposed upon repeating
element of integrally stiffened plate (fig. 3), in.
General Symbols
displacements in x-, y-, and z-directions, respectively, in.

orthogonsel coordinates; =z measured normal to plane of plate,
and x and y measured In plane of plate

n
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7qu’7xz’7yz components of shear strain

-'7xy average 7y, Over length of repeating element defined
by equation (AZ21)

€x1€ys€q components of normal strain

Oxs Oy Oy, components of normael stress, psi

Txy?Txz2Tyz components of shear siress, psi

¢,n transformed orthogonal coordinate system defined in

equations (22)
stress function defined by equations (A6)

warping function defined by equation (A1)
STATEMENT OF PROBLEM

The force-distortion relationships for the twisting and shearing of
rectangular orthotroplic integrally stiffened plates having their axes
of principal stiffness parallel or perpendicular to the slides of the
plate (figs. 1 and 2) may be written, as noted in reference 4, in two
forms as follows:

32
Mxy=2DkaBy+CN (1)
2 N
”xy zck% T (2)

or

- 2 M
aaw = — mm (3)
x Oy Dyy
N
Xy
Yoy = 2+ —— &)
Xy Xy ny
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in which the elastic constants ny, ny, end T are related to Dk’

Gk, and Ck by the following formules:

W
Dy = 2D,
Gy Dy
oot | o
c
T = - X
2Dy

Py

These elastlc constents can be evaluated in terms of the three coef-
ficients J, gq, and c which express the effectiveness of the stiffeners
in resistance to twisting, to shearing, and to coupling between twisting
and shearing, respectively. For plates with simple longitudinal or
transverse Iintegral stiffeners, the equations for the elastic constants
in terms of these coefficlents are determined as follows:

Dy = % GJt53 (6)
Gy = Gatg (7)
Cx = - ctg (8)

Dyy = Gty (9)

= _EEEE§__ (10)

T = _ (11)

The determination of the coefficient |J 1s presented subsequently in the
text and that of the coefficients gq and c, in the appendix.

"
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Expressions for these elastic constants have also been derived in
reference 4 for plates with stiffeners in a varlety of patterns, where the
efPectiveness of the stiffeners for resisting twisting and shearing is
expressed in terms of two parsmeters o' and B'. A method for the
evaluation of o' was given in reference 4, based on the work of refer-
ence 8, but no basis for the evaluation of B' was then available.

(The suggestion was made in reference 4 that B' be assumed equal to B.
Subsequent experimentetion has shown that for a wide range of proportions,
p=7T/88".) Velues of o' and B' may now be determined, however,

in terms of J and gq; thus

o - PVEE)6 - o
B! = 3275525 (13)
where
ta| b 2

Equations (12) and (13) are derived in the appendix.

The problem considered in the present paper is the evaluation of Js
q, and c. Actual velues of these coefficients are obtained herein for
only rectangular stiffeners with circular fillets, but the methods of
analysis are applicable to stiffeners of any cross section.

PROCEDURES FOR DETERMINATION OF COEFFICIENTS

Determination of ]

References 8 and 9 give torsion constants for sections such as those
illustrated in figures 1 and 2. The coefficient J used in the evalu-

ation of the elastic constants of integrally stiffened plates is related
to the conventional torsion constant K as follows:

K
3K (15)
2 Sy b
Ty
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Check tests of the twisting stiffness of a few plates of different
proportions have been made which confirm the results of references 8
and 9. No further anslysis of the twilsting stiffness of integrally
stiffened plates was therefore made. Further information on the evalu-
ation of J is given in the section entitled "Results and Applications."”

Determination of g and ¢

A quasi-shear deformation was lmposed on the repeating element of
the integrally stiffened plate as shown in figure 5, and the stress
resultants required to produce this deformation (fig. 4) were found.
The details of thils analysis are presented in the appendix and the
resulting equations are found to be

Nyy = QOtglyy (16)
and .
M’q = - CtSNW (17)
where gq and c &are glven by
ba/ft
S/ °8
2 + 8
=t 8

2
Wi, i, 2@ -D(2) -s-is
tg 2 tg  tg tg L/ \tg 2
c = (19)
bg/ts
in which bg; by, ZS, e tgs and ty are dimensions of the plate
(see fig. 2), and S, and 82 are integrals of a stress function ¢

1
defined in the appendix. The integrals are
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and
t

1 rW+—2-W- h
Beck) P
Pta~ VY . W)Y g
S (rW"'"é‘) S

In order to evaluate these integrals, use was made of an electrical
anslogy. As is shown in the asppendix, the stress function ¢ must
satisfy Laplace's equation,

2 2
:-;g+:—g=o (20)
2

The application of Omm's law to & thin conducting sheet of material
(see ref. T) shows that a function YV, which describes an electrical
potential field in the sheet, must satisfy Iaplace's equation,

2
=N @
oy~ oz

Accordingly, a potentisl fleld was set up in a conducting sheet over a
shape related linesrly to the shape of the ¢ross section under consider-
ation (see fig. 2) by electrically duplicating the boundsry conditions
on the stress function. A self-balancing potentiometer was used to
measure values of the potential over the conducting sheet as shown in
figure 5. The desired integrsals Sl and 82 were then computed by

numerically integrating the potential readings over the cross section.

The potentiometer used was a modified General Electric Anaslog Field
Plotter (ref. 6), and the conducting sheet was Type L Teledeltos paper.
This paper was sufficiently homogeneous to glve good results with the
large-scale cross sections used, but an adjustment was required to take
into account a T-percent deviation from the maximum resistence which
existed between the directions of principal resistance. This directional
property was corrected for by distorting the figure according to the
transformation

! (22)
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where Ry and Rz are electrical resistances in the y- and z-~directions,

respectively. The actual potential fleld in the sheet 1s described by
2 2
oV + Rz 3

2 " By oF

Thus, a potential value measured from the distorted figure is equivalent
to a potential at a corresponding point in an undistorted figure on
uniform, nondirectional conducting paper.

=0 (23)

As a check on the overall accuracy of the procedure, values of the
integrals were calculated for a typical cross section by the 1lterative
procedure of reference 10 and compared with those measured with the
electrical analog. The difference between the two values was less than
1l percent.

RESULTS AND APPLICATIORS

The values of J, q, and c¢ may be used directly in equations (6)
to (11) for the calculation of the elastic constants associated with the
twisting and shearing of plates with simple longitudinal or transverse
integral stiffening. For plates having comblned longitudinal and trans-
verse or symmetrically skewed ribbing, values of J and q may be used
in equations (12) and (13) %o calculate corresponding value of the param-
etersu o' and B' for use in the elastic-constant formulses of refer-
ence 4,

Bvaluation of Coefficients

Evaluation of J.- Check tests performed in the Langley structures

research laboratory in conjunction with this investigation have shown
that the method of reference 8 gives accurate results only when
ryftg S 1 and tyfbs S 2. The following formulas, which can be derived

by use of reference 8, should therefore be used only when rW/%S'i 1
and tw/ts S—_ 2:

3 L 4
S R B’ e’ 4
3=2+ 28 (t) o.1o5(t +a() (24)
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where
Tw
a = 0.09% + 0.070 IS (25)
and
2
T t. T t
(1+Ji) +_v{<_W+;L_K)
4 _ 5s/  Es\bs ¥ %5 (26)
ts rW
2L 4
tg

The results of reference 9 were found to agree closely with the
check tests previously mentioned. Reference 9 presents torsional
constants (designated herein as K') for the configuration shown in
figure 6(a), in which 1g = tg and Iy = ty. The results of refer-

ences 8 and 9 and extrapolations of each of these sources are presented
graphically in figure 6(b) for integrally stiffened plates of the pro-
portions shown in figure 6(a). The extrapolations were partly guided
by the experimental data from the check tests.

Inasmuch as the curves of figure 6(b) apply to only the config-
uration shown in figure 6(a), the torsional stiffness of any additional
skin or rib height must be accounted for separately. Since the addi-~
tional skin or rib is remote from the Jjuncture, the stress distribution
at the Juncture will not significantly affect the distribution in the
remote portions of the section; therefore, the additional torsionsl
stiffness 1is approximately that of a rectangular section. The torsion
constant X for any section 1s then the sum of KXK' (the torsion constant
of the section shown in fig. 6(a)) and the torsion constants of the rec-~
tangular sections; thus

3
1 1 B\ /b
_xr 1+ L8 _ h;_w__W)_Wh
K=X +3<2 = )ts +3<’°s T (ts> tg (1)

The relation between K and J is given in equation (15). When exper-
imental data are available, J may be computed directly as

J = ._BM:.Q_:E_ (28)
Gtg” QW
dx oy
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Evaluation of g and c.- The values of the shearing and coupling
effectiveness coefficients g and ¢ determined by the electrilcal analogy
are glven in teble I for a wide range of proportions of rectangular ribs
with clreular fillets. Also included in tgble I are the corresponding
values of the parsmeter B' of reference 4.

Values of q@ and c¢ are presented in figures 7 and 8 as plots of

ba/t A b r
S/°S
-—Z—- -2 S and = ¢ against —K. The curves apply only when the
q ts tg ts
values of both bS/tS and bW/%S are equal to or greater then the

largest values of these two parameters which appear in the table for the
given values of rw/ts and tw/ts under consideration. These plots

may be made because, beyond certain limits (the maximm values of bs/ts
and bw/ts sppearing in table I for the rw/ts and tw/%s under con-

sideration), additional rib height or additional plate length bhetween
ribs will not affect the stress distribution at the Juncture of the skin
and rib.

Interpolation may be mede by cross-~plotting when a set of dimension
ratios fall within the range of values presented in the table. .
When bs/%s is found within the teble but by/tg 1lies beyond the

range of the table, the values of q and c¢ appearing under the largest
value of by/tg for the bg/tg being considered may be used. However,

the value of B' must then be computed from equations (13) end (14) by
using the actusl value of bw/ts. When bw/ts is found within the table

but bs/ts lies beyond the range of the table, the value of g for the
largest value of bs/%s for the value of bw/ts being considered is used
in equation (18) to obtain a value of S5y. The value of bg/tg for which

the value of q was found must be used in equation (18) when Sl is

computed. The value of S1 thus obtained is then used in equation (18)

with the required values of bs/%s and 1g/tg to obtain the desired

values of q. This value of q may then be used in equation (13) to
compute B'. A similar scheme is used to find the value of c. That is,
the value of ¢ found in the table corresponding to the value of the by/tg

L]
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under consideratlion and the highest value of bS/tS appearing for that
value of bW/tS » together with the value of Sy previously obtained,
are used in equation (19) to compute S,. The values of §;, Sy, and
the dimension ratios being considered are then used in equation (19) to
compute c.

The ranges of the dimension ratios covered by the table and curves
are:

Ratio Range

Rib thickness/Skin thickness, Bffg + « + + e e e e s .. Otoh
Fillet radius/Skin thickness, ry/tg « « » + « « « « « « o . . . 0 %016
Length of repeating elements/Skin thickness, bg/bg + + ... Otow
Rib height/Skin thickness, by/tg « + « « + « « « ¢« « o . . . O %0

An sdditional result incidental to the evaluation of q and c¢
is that, for values of I'W/'bs > 1, no shear stress concentration exists

in the cross section. (Stress-concentration factors were based on an
average shear stress in the skin at a remote unaffected distance from
the Juncture of the skin and ribs.) No investigation of the stress
concentration when rw/’cs <1l was pursued.

I1llustrative Examples
In order to illustrate the method of obtaining the effectiveness
coefficlents and their significance, the effectiveness coefficients |,
g, and c are cslculated for the rib proportions used in the tests of
reference 3 and one variation of that shape.
The dimensions of the rib cross section used in reference 3 are:

bg = 1.00 in. tg = 0.05 in.

.b-w = O-lo j—n-. b‘w = 0.20 iIl- I'W = Oolo ino

The dimension ratios are then

it
hv)

tw/ts

bg/tg

20



1 NACA TN 3443

1}
=

by/tg

|
o

ry/tg =

These dimenslion ratlos are considered in the first example. The second
example considers the sasme dimension ratios except that the value of
rw/ts 18 changed from 2 to O.

t r
Example 1l.- From figure 6(b), for EE =2 and EH =2,
S S

Therefore,

K' = 23.%81‘

From equation (27) the torsion constant K is determined as

K = 23.%51* + %(11» - z)tsl‘ + %(2 - 2)(2)54034 = :27.%3lL

The effectiveness coeffilcient J can now be computed from equation (15)
as

27.1H:SlL

j o —————
2(20)1:81L

= 0.685

The value of bS/tS is larger than the largest value of bs/tS which
appears under tyftg =2 and ry/tg = 2 1in the table, and by/tg 18
equal to the largest value of bW/tS which appears under tW/tS =2 and
ry/tg = 2. Flgures 7 and 8 are therefore used to obtain values for ¢

bs/ts ls
and c. From figure 7, the value of —— -2 — for r /t =2 and
_ : tg W/ "8

ty/tg =2 1is found to be 4.0. Hence

2 oy
q
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or

q = l.lll

b
From figure 8, .tﬁ ¢ 1is found to be 2.10, or
S

¢ = 0.105 .

Using the above valuee of J, g, and c in equations (6), (7), and (8)
gives the values of Dy» Gk’ and C, as follows:

6

Dy = 2.8 x 107 @

Gy = 0.0555G
Cy = - 0.00525

The value of o' is found from equation (12) by substitution of the
values of j and g previously fourd:

d,' = %\/%(-l—-l—lii—-l'i—-]—:) (0.685 - 0.166) = 0-3225

From equation (1k),

Ay 1 PATRY:
b_—sts = l:b,(z) + 2(1 - 1;) (2) :l = 0.1486
The value of B' is then found from equation (13) as

1.111 - 1

o.hec - 0-2%%

B! =

Example 2.~ In this example, a configuration having the followipg
proportions is considered:

tfts =2 bsfts

20

I
o
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The value of J mey be found by means of equation (24) or from fig-
ure 6(b) and equation (15) to be

J = 0.436

From figures 7 and 8, g and ¢ are found to be
q = 1.031

and
¢ = 0,032

The velues of Dy, Gy, and- Cy are then found from equations (6), (7),
and (8) to be
Dk = 27.30 X 10'6G
Gy = 0.05155G
Cx = - 0.00160

From equation (12),

a' = 0.h2h
From equation (14),
A
ET%?' = 0.40
S°8

The value of B' 1s then found from equation (13) to be

Bt = 0.0775

The values of o' and B' found in these two examples could have
been used in the formulas of reference 4 to obtain the elastic con-
stants Dy, Gy, and Cy. The values of Dy and Gk so obtained would

be exactly those values cbtained by using the effectiveness coefficients
end g in equations (6) and (7). The values of Cy obtained from the

formulas of reference 4, however, are found to be somewhat greater than
those computed directly by use of the coefficient c.

J

i |
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This discrepancy, which disappears when ribs of small twisting
stiffness are considered, arises as a result of the assumptlon of refer-
ence &t that the shearing effectiveness of the ribs can be represented
by a substitute sheet of zero twisting stiffness. There is no corre-
sponding discrepancy in the calculation of Dy, however, since in refer-

ence 4+ the location of the substitute sheet (measured by o'H) is chosen
to give the correct value of twisting stiffness for the stiffened plate
a8 a whole. If a value of a'! is desired which will give the correct
value of the coupling term Cy, that value of o' may be obtained by

equating the expression of reference 4 for Ck 10 that of the present

paper and solving for a'. That procedure leads to the following expres-
sion for a':

o = %(-q:-f—i)c (29)

This value of o' would give correct values of C, but somewhat con-
servative values of Dx.

Discussion of illustrative examples.~ The most significant jmplication
of the results of this evaluation of the effectiveness coefficients is
that relatively small chenges in detailed proportions can appreciably
affect the overall effectiveness of integrally stiffened plates. As dem~
onstrated in the examples, a change in fillet radius from ry/tg =2

to Tyftg = O decreased B’ (' 1s a parameter which shows the effi-

ciency of the rib in resisting shear) by a factor of 0.339 and decreased
the twilsting stiffness by a factor of 0.687.

More complete analysis willl be required to evalusie fully the merits
of large fillet radil and the effect of changes in the other proportions.
Results of buckling tests of plates with fairly large f£fillet radii, such
as those of reference 3, should not be considered representative of the
results to be expected for similar pletes with small fillet radii.

Sultebly proportioned longitudinal or transverse integral stiffening
can evidently contribute to the shear stiffness of plates; thus integral
stiffeners may be ubtilized to contribube to the torsionel stiffness as well
as to the flexural stiffness of wing panels.
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CONCLUDING REMARKS

The evaluation of the shearing effectlveness of integral stiffening
for a wlde range of proportions of rectangular stiffeners with circular
fillets has indicated that the degree of penetration of stresses from
the skin Into the stiffeners is in part dependent upon the fillet radius.
Also, for fillet radii greater than the skin thickness, the shear-stress=-
concentration factor has been found to be equal to unity. Determination
of the overall structural importance of the fillet radius and the effect
of changing other proportions require and, on the basls of the large
. changes in stlffness associsted with small changes In conflguration shown
in the present study, deserve further Investigation.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronsutics,
Langley Field, Va., March 3, 1955.
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APPENDIX

ANALYSTIS OF SHEARING EFFECTIVENESS OF ILONGITUDINAL

OR TRANSVERSE INTEGRAL STIFFENING

Figure % shows the repeating element of a plate with integral
unidirectional stiffeners. A quasi-shear state of deformation has been
imposed upon the element so that the edge af has undergone a pure
shear translation with respect to the edge be. The problem is o
determine the stresses necessary to maintsin the imposed deformation.
The ratio of the resultants of the stresses to the magnitude of the
assumed distortion provides an index to the effectiveness of integrally
stiffened plates in resisting shearing forces.

Deriyation of Differential Eguation Governing Stress Function

The semi-inverse method of Saint-Venant, as found in reference 5
(pp. 259-263), is the approach used for this problem. Plane sections
parallel to the yz-plane before distortion are assumed to have their
shape preserved, but these planes may warp in the x-direction. This
warping 1s the same for all cross sectlions along the x~axis. Displace-
ments u in the x-direction of polnts in cross sections psrallel to the
Yz~plane can be defined by a warping function,

u = *(y: z) (A1)

Since the shape of the cross section is preéerved, the displacements in
the y- and z-directions (v and w), respectively, are

v=w=0 (a2)

The components of strain are therefore calculated from the relations
between strains and displacements as

€x=€y=€z=7’3rz=oW

= (a3)

Txy =ay
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The corresponding stresses can then be calculated as

Ox = o’y = Oy = Ty.z = O’
Typ = G %f | (Ak)
oV
T = G =~
¥y )

Consider now & stress function @$ = $(y,z) from which the shear
stresses Ty, &nd Ty, are obtalnable. The equations of equilibrium

given on page 229 of reference 5 must be satigfied. Only one of the
three equations of equilibrium is of significance, namely,

e, 2T L g (45)
oz oy

The stresses Ty, and Txy DAY then be expressed in terms of the

stress function @ = @(y,z); thus

_—
Y
5 (46)
Ty T -Bz

Equating the stresses determined in equations (A4) to those determined
in equations (A6), so as to determine the stresses from a consideration
of displacements and thereby automatically satisfy compatibility of
strains, ylelds

GéI:éQ
0z Oy
(AT)
G?—i: -Qﬁ
Joy oz

The warping function V¥ may be eliminated from equations (A7) by
differentiating both sides of the first of equations (A7) with respect
to y and both sldes of the second with respect to 2z and subtracting
the second from the first. Elimination of the warping function shows
that the stress funetion p must satisfy Iaplace's differential

equeation
?§+§§g=o (a8)

tx
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Stresses obtained from the solution of this differential equation satisfy
the conditions of equilibrium and compatibility.

Determination of Boundary Condltions

The stresses normal to the boundaries &b and cdef of the element
mist be zero hecause these boundaries represent the stress~free surfaces
of the repeating element. (See fig. 3.) The values of the stress
function along these two boundaries must therefore be constant in order
that the stresses normal to these boundaries may be zero. Boundary ab
is arbitrarily set at the constent value of zero, and boundary cdef
is arbitrarily set at the constant value of P. The physical signifi-
cance of this choice of boundary conditions masy be seen by consldering
the integrally stiffened plate to be a flat plete. Then,

=E 2 : (A9)
? tg
is the solution to equation (A8). Thus,

= - £
- (A10)

or

Nyy = Tyytg = P (A1)
Therefore P 1s the magnitude of the appllied shear force per unit
length.

Along the boundaries af and FE, the displacements u eare assumed
to be constant. The shear strain 7,, along those boundaries is given

by

ou , ow
= ==+ === 0 A12
Tk =5 TSy (a12)
The shear stress Tyz along those boundaries is therefore culculated
to be. zero, or
o)
gg = Ty = O (813)

elong boundaries af and be. The assumption that Ty, =0 along

boundaries &af and be could have been made from consideration of
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the fact that the boundaries are lines of symmetry for the stress
function, and therefore O@/dy = O at these lines of symmetry.

The problem has now been reduced mathematically to solving equa~
tlon (A8) subject to the boundary conditions:

N\

$ =0 along &b

@ =P along cdef . (A1k)

M=o along af and bec
Sy ]

which are included in figure 2.

Determination of Resultant Forces

The resultant forces (see fig. 4) necessary to maintain the assumed
state of deformation can now be determined in terms of the stress ~
function @ = @(y,z). When these forces and the distortions produced
by them are determined, the elastic constants can be obtained in terms
of the stress function. *

In the plane y = bg/2, the shear stresses may be resolved to
a resultant shearing force Fyx per unit length, acting at the midplane
of the skin, and a torgue « Der unit length. Eguations (A6) and

the boundary conditions (eqs. (All)) are used to determine the forces
in the plane y = bg/2 as follows:

tg
Fyx =\/; (Txy)y=bs/2dz = =P (A15)

tg %
x =j; (Tay )>'=bs/2('é§ ] z)dz

ts

= Pts<% - 13%5 . Pt /2dz) (A16)
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Tn & like mammer, the resultant forces on the yz-plame are obtalned as

'bs/2

e f Tyl dy = (aa7)

and
A/ e

Pt fbs/z h¢dzdy+ f dz
S 'bsts Pbsts ° By=vg/2

bs/2

3
L]

(A18)

where h is the z~-digtence from the y-axis to the boundary cdef.

Derivation of Formule for q

The relastive shear displacement & of plane af at ¥y = 'bs/z

with respect to plane be at y = -bg/2 at any value of 2 Petween
0O and %g 1is given by

bs/2
o=/ e (0S2Stgy (A1)

From this equation, equations (A6), and the stress-strain relation-
shlp Txy = G7xy’ ® Dbecomes

ffbs/a—ﬁdydz (Ogz<ty  (a20)

~bg/2 dz

The average shear strain over the length of the repeating element
is given hy

bs/2
A = N (h2)
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From equation (A17), Fyy = Fyx = -P; therefore, each of these -
two shear fdrces can be replaced by the more conventional notation ny.

The coefficient q, which represents the effectiveness of the integral :
gstiffener in resisting shear, can now be defined as follows:

4= (a22)
G'tsyw

Substitution from equation (A15) or (Al7) for Ny, and from equa- -
tion (A21) for 7xy in equation (A22) ylelds the coefficient q in
the followlng form:

b
q = 5 (a23)
1 'bs/2
~bg/2
Noting that @ =P when 2z = tg and rw+%§ly|§zs+rw+%{ .
(see fig. 2) and expressing the dimensions as dimensionless ratios .
permit q to be obtained in the form .
q = bg/ts
. W (A2h)

W+ =5
15 1 2
2 = 4+ —— =

ts + Ptg f - B tgdy

Derivation of Formula for ¢

The resultant torques Txy and. Tyx necessary to maintain the
agsumed state of deformation are defined in terms of two coeffil-

clent c and as
ents Txy cTyx

Txy —chyt SN}qy (A25)

Tyx

The torques are negative if ny is positive. This can be seen by
comparing Fyy of equation (A15) and Tyx Of equation (A16). From
equations (A17), (A18), and (A25), °Ty, is obtalned as

- cTyxtsny (a26)
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|

Ay 5 'bs/2 h 1 tg
= = 2 - d i . A2
Ty T2 T bgtg Pbstsu/:bs/gt/; paz dy + PtgYo By=pgyedz  (h27)

Similarly, o is obtained from equations (A17), (A18), and (A26) as

1 1 s
Tyx = 3~ Pig L ¢y=bs/2dz (228)

In order that these results may be Incorporated in flat-plate theory,
the twisting moments on adjacent sldes of a repeating element must be
equivalent. The distributed moments Txy and Tyx may be replaced by
concentrated lateral forces Tx:'r and Ty'x at the corners of the plate
as is done in reference 11. The resultant torques Txy and Tyx are
then replaced by Mxy where

My = 5(Txy + Tyx) (829)

This system 1s statically equivalent to the actual system. Tt therefore
produces essentlally the same distortions as the sctual system except in
regions at the edges of the plate comparable in width to the thickness
of the plate. This result follows from Saint-Venant's principle (see
ref. 5, p. 33). The resultant torque Myy 18 therefore defined in

terms of a coefficlent ¢ as

My = ~ctgN, (430)
where
1
¢ 5(q5W'+ CTYX)
ba/2 ph
O S| fs/f $ az ay (A31)
2 ‘bgtg Pbgts "bS/2 o

From equation (A20) the following relationship exists:

b
1 [Ps/2

bg/2
B e Pt S ppty 0zt G2

ZJ pgfe
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Rearranging equation (A32) and integrating over the thickness of the

skin ylelds

tg bg/2 tg [Ps/2

f f ’* 4 oy aa =2 Brmt Y (433)
o} -bg/2 -bg/2

Thus, in finding the value of a double integral of the pP-surface over
the area of the element, only the integral over the attached stiffener
need be found, since the integral over the flat-sheet part of the
element is found from just the line integral along the line 2z = g

over the length of the element.

Substituting equation (A33) into equation (A31), noting thet @ =

when =tg and ry + EH < ,y| < lg + ry + Eﬂ and nondimensionalizing
yields
vy 1t twtw YA rW*"
meincaaret-DE) e rwmf “"’y'—fwzﬂ Pumte
Cc = (AB}")
bg/tg

Thus, the forces required to maintein the assumed state of deforma-
tion are known in terms of two integrals:

Ty
W%
1
51 = 5o f o Pr=t gy (435)
- (z+ )
and
ry+ 5 h
Sp = —- f d

g (59

These two integrals asre evaluated for the cases consldered herein by
means of an electrical asnalog computer.
Determination of Elastic Constants Di, Gk, and Cp in
Terms of J, g, and ¢

The elastic constant Dy 1is defined in terms of the coefficient J
in equation (6) where J i1s obtained by the methods discussed in +the
maein text.
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The state of deformation assumed in the determination of the
coefficlents q and ¢ 1is cheracterized by

aE'W' =0 A
dx Oy (a37)

Thus, by setting the twist equal to zero in equation (1) and sub-
stituting from equation (A30) for Myy, the elastic constant Cp is
obtained as

Cx = -c'ts (ABB)

When the twist Eia' is set equal to zero in equation (2) and Txy

ox dy
as may be determined from equation (A22) is substituted for Txy of

equation (2), the elastic constant Gy is obtained as
Gk = Gqtg (439)

From the relationships of equations (5) the remaining elastic constants
D Gyrs and T become

xy»  Uxy
Dyy = GJtg (ak0)
Giatg
Gy = D Akl
v 2c2q + J ( )
T o= ol 5 (ak2)
Gitg

Determination of o' and B! in Terms of J and g

Reference U derived expressions for the elastic constants of
integrally stiffened pleates in which the effectiveness of the ribs for
resisting twisting end shearing is expressed in terms of two param-~
eters o' and R'. The coefficlent PB' represents the part of the
rib which is effective 1n reslsting shear when thils part is considered
to be Tlattened out over the length of the element, thus increasing
the effective flat-plate thickness of the element. The relation between
Bt and the applied shearing force Nky is then
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A\
Nyy = G <ts + B! b—‘g)yw (AL3)

Equating Ny, &s obtained from equation (A22) to that as obtained in
equation (Al3) results in the following relationship between B! and q:
q -1

t = " (Akk)
Ay/bgts

The coefficient a' represents the height above the midplane of the skin

at which the centrold of the distributed fractional area of the rib is

located to produce the required twisting stiffness. By substituting

from equation (A43) for B' and fram equation (9) for Dyy 1in equa-

tion (93) of reference 4, o' is determined in terms of j and q:

wt =S8l e N1
i J2(q - l) (J 6) (Rh5)

"
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AS DETERMINED BY ANALOG COMPUTER

TABLE I.~ VALUES OF gq, ¢, AND B’
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AS DETERMINED BY AMALOG COMPUEER - Concluded

TABIE T.- VALUES OF q, c, AKD g’
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Figure 1.~ Integrally stiffened plate considered.

Z
Boundary conditions: —tw—1
$=0 alonqg ab e d
¢=P along cdef 1
o LT’
v =0 adlonq af and bc b
3y q af an i W
/]
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f
y 5 b
bS

Figure 2.~ Cross section of repeating element and boundary conditions on
stress function @.
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Figure 3.- Repeating element in imposed state of deformation.

1'; t - Fyx
i , . /
V4
t bsF
Lf bsTxy sy
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Pigure L.- Repeating element with resultant forces necessary to meintain
imposed deformation.
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Figure 5.- Analog Field Plotter. L-83509
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